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Abstract: With the wide deployment of public cloud computing infrastructures, using clouds to host data query 

services has become an appealing solution for the advantages on scalability and cost-saving. However, some data might 

be sensitive that the data owner does not want to move to the cloud unless the data confidentiality and query privacy are 

guaranteed. On the other hand, a secured query service should still provide efficient query processing and significantly 

reduce the in-house workload to fully realize the benefits of cloud computing. We propose the Random Space data 

perturbation method to provide secure and efficient range query and kNN query services for protected data in the cloud. 

This combines order preserving encryption, dimensionality expansion, random noise injection, and random projection, 

to provide strong resilience to attacks on the perturbed data and queries. It also preserves multidimensional ranges, 

which allows existing indexing techniques to be applied to speedup range query processing.  
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I. INTRODUCTION 

Hosting data-intensive query services in the cloud is 

increasingly popular because of the unique advantages in 

scalability & cost-saving. With cloud infrastructures, the 

service owners can conveniently scale up or down the 

service and only pay for the hours of using the servers. 

This is an attractive feature because the workloads of 

query services are highly dynamic, and it will be 

expensive and in efficient to serve such dynamic work 

loads with in-house infrastructures [2].  
 

We summarize these requirements for constructing a 

practical query service in the cloud as the CPEL criteria: 

data Confidentiality, query Privacy, Efficient query 

processing, and Low in-house processing cost. Satisfying 

these requirements will dramatically increase the 

complexity of constructing query services in the cloud.  

 

We propose the Random Space Perturbation(RASP) 

approach to constructing practical range query and k-

nearest-neighbour (kNN) query services in the cloud. The 

proposed approach will address all the 2 four aspects of 

the CPEL criteria and aim to achieve a good balance on 

them. The basic idea is to randomly transform the 

multidimensional datasets with a combination of order 

preserving encryption, dimensionality expansion, random 

noise injection, and random project, so that the utility for 

processing range queries is preserved. The RASP kNN 

query service (kNN-R) uses the RASP range query service 

to process kNN queries. The key components in the RASP 

framework include (1) the definition and properties of 

RASP perturbation; (2) the construction of the privacy-

preserving range query services; (3) the construction of 

privacy-preserving kNN query services; and (4) an 

analysis of the attacks on the RASP-protected data and 

queries. 

 

In summary, the proposed approach has a number of 

unique contributions. 

 The RASP perturbation is a unique combination of 

OPE, dimensionality expansion, random noise 

injection, and random projection, which provides 

strong confidentiality guarantee. 

 The RASP approach preserves the topology of 

multidimensional range in secure transformation, 

which allows indexing and efficiently query 

processing. 

 The proposed service constructions are able to 

minimize the in-house processing workload because 

of the low perturbation cost and high precision query 

results.  

 

II.  QUERY SERVICES IN THE CLOUD 

II.A. System Architecture 

We assume that a cloud computing infrastructure, such as 

Amazon EC2, is used to host the query services and large 

data sets. The purpose of this architecture is to extend the 

proprietary database servers to the public cloud, or use a 

hybrid private-public cloud to achieve scalability and 

reduce costs while maintaining confidentiality. Each

 
Fig.1.System architecture for RASP-based queryservices. 
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Record x in the out sourced database contains two parts: 

the RASP-processed attributes D′ =F(D,K) and the 

encrypted original records, Z =E(D,K′), where K and K′ 

are keys for perturbation and encryption, respectively. The 

RASP-perturbed data D′ are for indexing and query 

processing. Figure1 shows the system architecture for both 

RASP-based range query service and kNN service. 

 

There are two clearly separated groups: the trusted parties 

and the un trusted parties. The trusted parties include the 

data/service owner, the in-house proxy server, and the 

authorized users who can only submit queries. The data 

owner exports the perturbed  data to the cloud. Mean 

while, the authorized users can submit range queries or 

kNN queries to learn statistics or find some records. The 

un trusted parties include the curious cloud provider who 

hosts the query services and the protected database. The 

RASP-perturbed data will be used to build indices to 

support query processing. 

 

There are a number of basic procedures in this framework: 

(1) F(D) is the RASP perturbation that transforms the 

original data D to the perturbed data D′; (2) Q(q) 

transforms the original query q to the protected form q′ 

that can be processed on the perturbed data; (3) H(q′,D′) is 

the query processing algorithm that returns the result R′.  

 

II.B. Threat Model 

Assumptions: Our security analysis is built on the 

important features of the architecture. Under this setting, 

we believe the following assumptions are appropriate. 

 Only the authorized users can query the proprietary 

database. Authorized users are not malicious and will 

not intentionally breach the confidentiality. We 

consider insider attacks are orthogonal to our 

research; thus, we can exclude the situation that the 

authorized users collude with 

 Un trusted cloud providers to leak additional 

information. 

 The client-side system and the communication 

channels are properly secured and no protected data 

records and queries can be leaked. 

 Adversaries can see the perturbed database, the 

transformed queries, the whole query processing 

procedure, the access patterns, and understand the 

same query returns the same set of results, but nothing 

else. 

 Adversaries can possibly have the global information 

of the database, such as the applications of the 

database, the attribute domains, and possibly the 

attribute distributions, via other published sources 

(e.g., the distribution of sales, or patient diseases, in 

public reports).These assumptions can be maintained 

and reinforced by applying appropriate security 

policies.  
 

Protected Assets: Data confidentiality and query privacy 

should be protected in the RASP approach. While the 

integrity of query services is also an important issue, it is 

orthogonal to our study.  

Attacker Modelling: The goal of attack is to recover (or 

estimate) the original data from the perturbed data, or 

identify the exact queries (i.e., location queries) to breach 

users’ privacy. According to the level of prior knowledge 

the attacker may have, we categorize the attacks into two 

categories. 

 Level 1: The attacker knows only the perturbed data 

and transformed queries, without any other prior 

knowledge. This corresponds to the ciper text-only 

attack in the cryptographic setting. 

 Level 2: The attacker also knows the original data 

distributions, including individual attribute 

distributions and the joint distribution (e.g., the 

covariance matrix) between attributes.  In practice, for 

some applications, whose statistics are interesting to 

the public domain, the dimensional distributions 

might have been published via other sources. 

 

Security Definition: Different from the traditional 

encryption schemes, attackers can also be satisfied with 

good estimation. Therefore, we will investigate two levels 

of security definitions: (1) it is computationally intractable 

for the attacker to recover the exact original data based on 

the perturbed data; (2) the attacker cannot effectively 

estimate the original data. 
  
III. RASP: RANDOMSPACEPERTURBATION 

III.A. Definition of RASP 

RASP is one type of multiplicative perturbation, witha 

novel combination of OPE, dimension expansion, random 

noise injection, and random projection. Let’sconsiderthe 

multidimensional data are numeric andin multidimensional 

vector space1.  
 

The RASP perturbation involves three steps. Its security is 

based on the existence of random in vertiblereal-value 

matrix generator and random real value generator.  For 

each k-dimensional input vector x. 

1) An order preserving encryption (OPE) scheme[1], 

Eope with keys Kope, is applied to each dimension of 

x: Eope (x,Kope) ∈Rd to chang ethe dimensional 

distributions to normal distributions with each 

dimension’s value order still preserved. 

2) The vector is then extended to d+2 dimensions as 

G(x) = ((Eopt(x))T, 1, v)T , where the (d + 1)-th 

dimension is always a 1 and the (d + 2)-th dimension, 

v, is drawn from a random real number generator 

RNG that generates random values from a tailored 

normal distributions. We will discuss the design of 

RNG and OPE later. 

3) The (d + 2)-dimensional vector is finally transformed 

to 

4) F(x,K= {A,Kope,RG}) = A((Eope(x))T , 1, v)T, 

where A is a (d+2)×(d+2) randomly generated 

invertible matrix with  aij∈R such that there are at 

least two non-zero values in each row of A and the 

last column of A is also non-zero2.  
 

III.B. Properties of RASP 

RASP has several important features. First, RASP doesnot 

preserve the order of dimensional values because of the 
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matrix multiplication component, which distinguishes 

itself from order preserving encryption(OPE) schemes, 

and thus does not suffer from the distribution-based attack. 

An OPE scheme maps a set of single-dimensional values 

to another, while keeping the value order unchanged. 

 

Since the RASP perturbation can be treated as a combined 

transformation F(G(Eope(x))), it is sufficient to show that 

F(y) = Ay does not preserve the order of dimensional 

values, where y ∈Rd+2 and A ∈R(d+2)×(d+2). The proof 

is straightforward as shown in Appendix. 

 

Second, RASP does not preserve the distances between 

records, which prevents the perturbed data from distance-

based attacks [8]. 

2. Currently, we use a random invertible matrix generator 

that draws matrix elements uniformly at random from the 

standard normal distribution and check the matrix 

inevitability and the nonzero conditions.5 

 

Third, the original range queries can be transformedto the 

RASP perturbed data space, which is the basisof our query 

processing strategy. A range query describes a hyper-cubic 

area (with possibly openbounds) in the multidimensional 

space.  

 

III.C. Data Confidentiality Analysis 

As the threat model describes, attackers might be 

interested in finding the exact original data records or 

estimating them based on the perturbed data. For 

estimation attack, if the estimation is sufficiently accurate 

(above certain accuracy threshold), we say the 

perturbation is not secure. Below, we define the measure 

for evaluating the effectiveness of estimation attacks. 

 

III.C.a  Evaluating Effectiveness of Estimation Attacks 

Because attackers may not need to exactly recover 

theoriginal values, an accurate estimation will be 

sufficient. 

 

A measure is needed to define the “accuracy” or 

“uncertainty” as we mentioned. We use the commonly 

used mean-squared-error (MSE) to evaluate the 

effectiveness of attack. To be semantically consistent, thej-

th dimension can be treated as sample values drawn from a 

random variable Xj. Let xijbe the value of thei-th original 

record in j-th dimension and ˆxijbe the estimated value. 

The MSE for the j-th dimension can be defined as 

MSE(Xj, ˆXj) = 

1 

n 

n 

X i 

= 

1 

(xij− ˆxij)2, 

which is equivalent to the variance: var(Xj− ˆXj). NR 

MSE(Xj) = 2qMSE(Xi,Xˆj)/domain length,(2)instead, 

which is intuitively the rate between theuncertain range 

and the whole domain. 

To compare MSE for multiple columns, we also need to 

normalize these two series {xij} and {ˆxij}to eliminate the 

difference on domain scales. The normalization procedure 

[11] is described as follows. Assume the mean and 

variance of the series {xij} isμj and σ2j, correspondingly. 

The series is transformed by xij← (xij−μj)/σj. A similar 

procedure is also applied to the series {ˆxij}. For the 

normalized domains, the range [−2, 2] almost covers the 

whole population3[11]. Therefore, for normalized series, 

NR MSE is simply RMSE/2. 

 

III.  C.b. Prior-Knowledge Based Analysis 

Below, we analyze the security under the two levelsof 

knowledge the attacker may have, according to thetwo 

levels of security definitions: exact match andstatistical 

estimation. 

 

Naive Estimation. 

The goal is to show the number of valid X datasetin terms 

of a known perturbed dataset P. 

 

Proposition 1: For a known perturbed dataset P,there exists 

O(2(d+1)(d+2)n) candidate X datasets inthe original space. 

Proof: For a given perturbation P = AZ, whereZ is X with 

the two extended dimensions, we useBd+1 to represent the 

(d + 1)-th row of A−1. Thus,Bd+1P = [1, . . . ,1], i.e., the 

appended (d+1)-th row ofZ.  

 

The total number of ˆB including non-invertibleones is 

2(d+1)(d+2)n.  

 

Thus, there are about (1 − exp−c(d+2))2(d+1)(d+2)n 

invertible ˆB. Correspondingly, there are a same number 

of candidate X. Thus, finding the exact X has a negligible 

probability in terms of the number of bits, n. 

 

Distribution-based Estimation. 

With the known distributional information, the attacker 

can do more on estimating the original data. The known 

most relevant method is called Independent Component 

Analysis(ICA) [17]. For a multiplicative perturbation P = 

AX,the basic idea is to find an optimal projection, wP, 

where w is a d + 2 dimension row vector, to result ina row 

vector with its value distribution close to thatof one 

original attribute. It can be extended to finda matrix W, so 

that WP gives independent and non-gaussian rows, i.e., a 

good estimate of X. 

 

Proposition 2: There are O(2dn) candidate projection 

vectors, w, that lead to the same level of nongaussianity. 

Proof: The OPE encrypted matrix ¯X (with the 

homogeneous dimension excluded, which can be possibly 

recovered) can be treated as a sample set drawn from a 

multivariate normal distribution N(μ,_). Anyinvertible 

transformation ¯ P = ¯ A ¯X will result in another 

multivariate normal distribution N(A¯μ,A¯_A¯T). 

 

Thus, any projection w ¯ P will not change the 

gaussianity, and there are O(2dn) such candidates of 

w.Thus, the probability to identify the right projectionis 
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negligible in terms of the number of bits n. Thisshows that 

any ICA-style estimation that depends on non-guassianity 

is equally ineffective to the RASP perturbation. 

 

IV. RASP RANGE-QUERY PROCESSING 

IV.A. Transforming Range Queries 

Let’s look at the general form of a range query condition. 

Let Xi be an attribute in the database. A simple condition 

in a range query involves only one attribute and is of the 

form “Xi <op>ai”, where aiis a constant in the normalized 

domain of Xi and op ∈ {<,>,=,≤,≥, 6=} is a comparison 

operator. For convenience we will only discuss how to 

process Xi <ai, while the proposed method can be slightly 

changed for other conditions. Any complicated range 

query can be transformed into the disjunction of a set of 

conjunctions, i.e., Snj=1(Tm i=1 Ci,j), where m, n are 

some integers depending on the original query conditions 

and Ci,jis a simple condition about Xi.Again, to simplify 

the presentation we restrict our discussion to a single 

conjunction condition ∩mi=1Ci, where Ciis in form of bi 

≤ Xi ≤ ai.  

 

Proposition 1: Order preserving encryption functions 

transform a hyper-cubic query range to another hyper-

cubic query range. 

 

Proof: The original range query condition consists of 

simple conditions like bi ≤ Xi ≤ aifor each dimension. 

Since the order is preserved, each simple condition is 

transformed as follows: Eope(bi) ≤ Eope(Xi) ≤ Eope (ai), 

which means the transformed range is still a hyper-cubic 

query range. 

 

Let y = Eope(x) and ci = Eope(ai). A simple condition Yi 

≤ ci defines a half-space. With the extended dimensions 

zT= (yT, 1, v), the half-space can be represented as wTz ≤ 

0, where w is a d + 2 dimensional vector with wi= 1,wd+1 

= −ci, and wj= 0 for j 6= i, d + 1. Finally, let u = Az, 

according to the RASP transformations 

 
 

IV.B. Security Enhancement on Query Transformation 

The attacker may also target on the transformed queries. 

 

Countering Dimensional Selection Attack 

We show that the dimensional selection attack can reveal 

partial information of the selected data dimensions, if the 

attacker knows the distribution of the dimension. 

 

Assume the query condition is applied to the i-th 

dimension. If the query parameter wTA−1 is directly 

submitted to the cloud side, the server can apply wTA−1 

to each record u in the server, and get wTA−1u = Eope(xi) 

− Eope(ai), where xi is the ithdimension of the 

corresponding original record x. 

 

According to the design of noise, the extended (d+ 2)-th 

dimension v in the RASP perturbation: F(x) = A(Eope(x)T 

, 1, v)T is always greater than v0, which can be used to 

construct secure query conditions. Instead of processing a 

half space condition Eope(Xi) ≤ Eope(ai), we use 

(Eope(Xi) − Eope(ai))(v − v0) ≤ 0 instead. These two 

conditions are equivalent because v always satisfies v > 

v0. Using the similar transformations, we get Eope(Xi) − 

Eope(ai) = wTA−1u and v = qTA−1u, where qd+2 = −1, 

qd+1 = v0, and qj= 0, for j 6= d. Thus, we get the 

transformed quadratic query condition 

uT(A−1)TwqTA−1u ≤ 0. (4) randomly chosen for each 

record, the value Eope(Xi) − Eope(ai) is protected by the 

randomization. _i does not reveal the key parameters as 

well. Let ci = Eope(ai) and aibe the i-th row of A−1. _i is 

(ai−ciad+1)T(v0ad+1 −ad+2). As all the components: ai, 

ci, ad+1, and ad+2 are unknown and cannot be further 

reduced, _i provide no information to help drive 

information about A−1. 

 

Other Potential Threats. 

Because the query transformationmethod does not 

introduce randomness – thesame query will always get the 

same transformation, and thus the confidentiality of access 

pattern is not preserved. We summarize the leaked 

information related to access patterns as follows. 

 Attackers know the exact frequency of each 

transformed 

 query. 

 The set relationships (set intersection, union, 

difference, etc.) between the query results are revealed 

as a result of exact range query processing. 

 Some query matrices on the same dimension may 

have special relationship preserved as shown in 

Proposition 3. 

 We admit this is a weakness of the current design. 

Thus, by simply observing the query frequency or 

relationships between queries, one cannot derive 

useful information. An important future work is to 

formally define the specific information leakage 

caused by the leaked query and access patterns, and 

then precisely analyze the data and query 

confidentiality affected by this information leakage 

under different security assumptions. 

 

IV.C. A Two-Stage Query Processing Strategy with 

Multidimensional Index Tree 

With the transformed queries, the next important taskis to 

process queries efficiently and return precise results to 

minimize the client-side post-processin effects. A 

commonly used method is to use multidimensional tree 

indices to improve the search performance. 

 

Multidimensional Index Tree. 

Most multidimensional indexing algorithms are derived 

from R-tree like algorithms [22], where the axis-aligned 

minimum8bounding region (MBR) is the construction 
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block for indexing the multidimensional data. For 2D data, 

an MBR is a rectangle. For higher dimensions, the shapeof 

MBR is extended to hyper-cube. Figure 2 shows the 

MBRs in the R-tree for a 2D dataset, where each node is 

bounded by a node MBR. The R-tree range query 

algorithm compares the MBR and the queried range to 

find the answers. 

 

The Two-Stage Processing Algorithm. 

The transformedquery describes a polyhedron in the 

perturbed space that cannot be directly processed by 

multidimensionaltree algorithms. New tree search 

algorithms could be designed to use arbitrary polyhedron 

conditions directly for search. However, we use a simpler 

two-stage solution that keeps the existing tree search 

algorithms unchanged. 

 

At the first stage, the proxy in the client side finds the 

MBR of the polyhedron (as a part of the submitted 

transformed query) and submit the MBR and a set of 

secured query conditions {_1, . . . ,_m} to the server. 

The server then uses the tree index to find the set of 

records enclosed by the MBR. 

 

At the second stage, the server uses the transformed half 

space conditions to filter the initial result. In mostcases of 

tight ranges, the initial result set will be reasonably small 

so that it can be filtered in memoryby simply checking the 

transformed half-space conditions. However, in the worst 

case, the MBR ofthe polyhedron will possibly enclose the 

entire dataset and the second stage is reduced to a linear 

scan of the entire dataset. The result of second stage will 

return the exact range query result to the proxy server, 

which significantly reduces the post-processing cost that 

the proxy server needs to take. It is very important to the 

cloud-based service, because low post-processing cost 

requires low in-house investment. 

 

V.  KNN QUERY PROCESSING WITH RASP 

Because the RASP perturbation does not preserve 

distances (and distance orders), kNN query cannot be 

directly processed with the RASP perturbed data. In this 

section, we design akNN query processing algorithm 

based on range queries (the kNN-R algorithm).As a result, 

the use of index in range query processingalso enables fast 

processing of kNN queries. 

 

A. Overview of the kNN-R Algorithm 

The original distance-based kNN query processing finds 

the nearest k points in the spherical range that is centered 

at the query point. The basic idea of our algorithm is to use 

square ranges, instead of spherical ranges, to find the 

approximate kNN results, so that the RASP range query 

service can be used. There are a number of key problems 

to make this work securely and efficiently. (1) How to 

efficiently find the minimum square range that surely 

contains the k results, without many interactions between 

the cloud and the client? (2) Will this solution preserve 

data confidentiality and query privacy? (3) Will the proxy 

server’s workload increase? to what extent? 

Definition 1: A square range is a hyper-cube that is 

centred at the query point and with equal-length edges. 

Figure 5 illustrates the range-query-based kNN processing 

with two-dimensional data. The Inner Range is the square 

range that contains at least k points,and the Outer Range 

encloses the spherical rangethat encloses the inner range. 

The outer range surely contains the kNN results 

(Proposition 2) but it mayalso contain irrelevant points 

that need to be filteredout. 

 

Proposition 2: The kNN-R algorithm returns results with 

100% recall. 

Proof: The sphere in Figure 5 between the outer range and 

the inner range covers all points with distances less than 

the radius r. Because the inner range contains at least k 

points, there are at least k nearest neighbours to the query 

points with distances less than the radius r. Therefore, the 

k nearest neighbours must be in the outer range. 

 

The kNN-R algorithm consists of two rounds 

ofinteractions between the client and the server. Figure 4 

demonstrates the procedure. (1) The client will send the 

initial upper-bound range, which contains more than k 

points, and the initial lower-bound range, which contains 

less than k points, to the server. The server finds the inner 

range and returns to the client. 

 

(2) The client calculates the outer range based on theinner 

range and sends it back to the server. The serverfinds the 

records in the outer range and sends themto the client. (3) 

The client decrypts the records andfind the top k 

candidates as the final result. 

 
Fig. 4. Procedure of KNN-R algorithm 

 

 
Fig. 5. Illustration for kNN-R Algorithm when k=3. 
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B. Finding Compact Inner Square Range 

An important step in the kNN-R algorithm is to find the 

compact inner square range to achieve highprecision. In 

the following, we give the (k, δ)-rangefor efficiently 

finding the compact inner range. 

 

Definition 2: A (k, δ)-range is any square range centred 

at the query point, the number of points inwhich is in the 

range [k, k + δ], δ is a nonnegativeinteger. 

 

We design an algorithm similar to binary searchto 

efficiently find the (k, δ)-range. Suppose a square range 

centred at the query point with length of Lin each 

dimension is represented as S(L). Let thenumber of points 

included by this range is N(L). Ifa square range S(in) is 

enclosed by another squarerange S(out), we say S(in) 

⊂S(out). It directly followsthat N(in) ≤ N(out), and also 

Corollary 1: If N(1) < N(2), S(1) ⊂S(2). 
 

Using this definition and notation, we can always 

construct a series of enclosed square ranges centred on the 

query point: S(L1) ⊂S(L2) ⊂. . . 

,⊂S(Lm).Correspondingly, the numbers of points enclosed 

by{S(Li)} have the ordering N(L1) ≤ N(L2) ≤ . . .N(Lm). 

 

Selection of Initial Inner/Outer Bounds. 

The selectionof initial inner bound can be the query point. 

If the query point is q(q1, . . . , qd), S(L1) is a 

hypercubedefined by {qi ≥ Xi ≥ qi, i = 1 . . . d}. The naïve 

selection of S(Lm) would be the whole domain.  
 

C. Finding Inner Range with RASP PerturbedData 

Algorithm 4 gives the basic ideas of finding the compact 

inner range in iterations. There are two criticaloperations 

in this algorithm: (1) finding the numberof points in a 

square range and (2) updating the higherand lower bounds. 

Because range queries are securedin the RASP framework, 

the key is to update thebounds with the secured range 

queries, without thehelp of the client-side proxy server. 

The problem of binary range search is to use thehigher 

bound range S(high) and the lower bound range S(low) to 

derive S(mid). When all of these ranges are secured, the 

problem is transformed to 

(1) deriving _(mid) 

ifrom _(high) 

iand _(low) 

i ; and (2) 

deriving MBR(mid) from MBR(high) and MBR(low). The 

following discussion will be focused on the simplified 

RASP version without the OPE component, which will be 

extended with the OPE component.We show that 

Proposition 3: 

(_(high) 

i + _(low) 

i )/2 = _(mid) 

i . 

10 
 

Proof: Remember that _i for Xi < ci can be represented as 

(ai− ciad+1)T(v0ad+1 − ad+2), where aiis the i-th row of 

the matrix A. Let the conditions be Xi < h, Xi < l, and Xi 

<(h+l)/2 for the high, low, and middle bounds, 

correspondingly. Thus, (_(high)i + _(low)i )/2 = (ai− ((h + 

l)/2)ad+1)T (v0ad+1 − ad+2), which is _(mid)i . 

 

As we have mentioned, the MBR of an arbitrary 

polyhedron can be derived based on the vertices of the 

polyhedron.  

 

Let the j-th dimension of MBR(L) represented as [s(L) 

j,min, s(L) j,max], where s(L) j,min= min{y(L) ij, i = 1 . . 

.m},and s(L) j,max= max{y(high) ij, i = 1 . . .m}. Now 

wechoose the MBR(MID) as follows: for j-th dimension 

we use [(s(low)j,min+ s(high)j,min)/2, (s(low)j,max+ 

s(high)j,max)/2]. 

 

Proposition 4: MBR(MID) encloses MBR(mid). The 

details of proof can be found in Appendix. Because the 

MBR is only used for the first stage of range query 

processing, a slightly larger MBR still encloses the 

polyhedron, which guarantees the correctness of the two-

stage range query processing. Including the OPE 

component. The results on _(mid)i and MBR(MID) can be 

extended to the RASP scheme with the OPE component. 

Let the condition for the “between” bound be Xi < b that 

satisfies fi(b) = (fi(h) + fi(l))/2. According tothe OPE 

property, we have l < b < h, i.e., thecorresponding range is 

still between the lower rangeand higher range. Therefore, 

the same binary searchalgorithm can still be applied, 

according to Corollary1. The server can also derive 

(_(high)i + _(low) i )/2 =(ai− ((fi(h) + fi(l))/2)ad+1)T 

(v0ad+1 − ad+2) = _btwi,a result similar to Proposition 

3.Similarly, we define MBR(BTW) withfi(s(BTW) i,max) 

= (fi(s(low)i,max) + fi(s(high)i,max))/2 and 

fi(s(BTW)i,min) = (fi(s(low)i,min) + fi(s(high) i,min))/2, 

whileMBR(btw) is defined based on the vertices to be 

Consistent with _(btw) i . 
 

D. Defining Initial Bounds 

The complexity of the (k, δ)-range algorithm is determined 

by the initial bounds provided by the client.Thus, it is 

important to provide compact ones to help the server 

process queries more efficiently. The initial lower bound is 

defined as the query point.Forq(q1, . . . , qd), the 

dimensional bounds are simply qj≤ Xj≤ qj. The higher 

bounds can be defined in multiple ways.(1) Applications 

often have a user-specified interest bound, for example, 

returning the nearest gas station in 5 miles, which can be 

used to define the higher bound. (2) We can also use 

center-distance based bound setting. Let the query point 

has a distance γto the distribution center - as we always 

work on normalized distributions, the center is (0, . . . ,0). 

The upper bound is defined as qj− ǫγ≤ Xj≤ qj+ ǫγ, 

whereepsilon ∈(0, 1] defines the level of conservativity. 

(3) If it is really expected to include all candidate kNN 

regardless how distant they are, we can include a rough 

density-map (a multidimensional histgram) for quickly 

identifying the appropriate higher bound. 
 

E. Security of kNN Queries 

As all kNN queries are completely transformed to range 

queries, the security of kNN queries are equivalent to the 
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security of range queries. According to the previous 

discussion in Section 4.2, the transformed range queries 

are secure under the assumptions. Therefore, the kNN 

queries are also secure. Detailed proofs have to be skipped 

for space limitation 

 

VI. EXPERIMENTS 

In this section, we present four sets of experimentalresults 

to investigate the following questions, correspondingly. 

(1) How expensive is the RASP perturbation? 

(2) How resilient the OPE enhanced RASP is to the ICA-

based attack? (3) How efficient is the two-stage range 

query processing? (4) How efficient is the kNN-R 

query processing and what are the advantages? 

 

VI.A. Datasets 

Three datasets are used in experiments. (1) A 

syntheticdataset that draws samples from uniform 

distribution in the range [0, 1]. (2) The Adult dataset from 

UCI machine learning database5. We assign numeric 

values to the categorical values using a simple one-to- one 

mapping scheme, as described in Section 3.(3) The 2-

dimensional NorthEast location data from treeportal.org. 

5. http://archive.ics.uci.edu/ml/ 
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VI.B. Cost of RASP Perturbation 

In this experiment, we study the costs of the componentsin 

the RASP perturbation. The major costs can be dividedinto 

two parts: the OPE and the restpart of RASP. We 

implement a simple OPE scheme [1] 

 
Fig.6:The cost distribution of the full RASP scheme 

Data:Adult(20K records,5-9dimensions) 

 
Fig.7:Randomly generated matrix Aand the progressive 

resilience to ICA attack Data Adult(10 

dimensions,10Krecords) 

by mapping original column distributions to normal 

distributions. The OPE algorithm partitions the target 

distribution into buckets. Then, the sorted original values 

are proportionally partitioned according to the target 

bucket distribution to create the buckets for the original 

distribution. With the aligned original and target buckets, 

an original value can be mapped to the target bucket and 

appropriately scaled. Therefore, the encryption cost 

mainly comes from the bucket search procedure 

(proportional to logD, where Dis the number of buckets). 

Figure 6 shows the cost distributions for 20K records at 

different number of dimensions. The dimensionality has 

slight effects on the cost of RASP perturbation. Overall, 

the cost of processing 20K records is only around 0.1 

second. 
 

VI.C. Resilience to ICA Attack 

We have discussed the methods for countering theICA 

distributional attack on the perturbed data. In this set of 

experiments, we evaluate how resilient the RASP 

perturbation is to the distributional attack. 

 

Results.We simulate the ICA attack for randomlychosen 

matrices A. The data used in the experimentis the 10-

dimensional Adult data with 10K records. 
 

Figure 7 shows the progressive results in a numberof 

randomly chosen matrices A. The x-axis representsthe 

total number of rounds for randomly choosingthe matrix 

A; the y-axis represents the minimumdimensional NR 

MSE among all dimension. WithoutOPE, the label “Best-

without-OPE” representsthe most resilient A at the round 

i, “Worst-without-OPE” represents the A of the weakest 

resilience, and“Average-without-OPE” is the average 

quality of thegenerated A matrices for i rounds.We see 

that the bestcase is already close to the upper bound 0.7 

(Section III.C). With the OPE component, the worst case 

can alsobe significantly improved. 
 

VI.D. Performance of Two-stage Range Query Processing 

In this set of experiments, we study the 

performanceaspects of polyhedron-based range query 

processing.We use the two-stage processing strategy 

described inSection 4, and explore the additional cost 

incurred bythis processing strategy.  
 

Results.The first pair of figures (the left subfigures 

ofFigure 8 and 9) shows the number of block accesses for 

10,000 queries on different sizes of data with different 

query processing methods. For clear presentation, we use 

log10(# of block accesses) as the y-axis.  
 

The cost of linear scan is simply the number of blocks for 

storing the whole dataset. The data dimensionality is fixed 

to 5 and the query range is set to 30% of the whole 

domain. Obviously, the first stage with MBR for 

polyhedron has a cost much cheaper than the linear scan 

method and only moderately higher than R*tree 

processing on the original data. Interestingly, different 

distributions of data result in slightly different patterns. 

The costs of R*tree on transformed queries Wall clock 

cost distribution (milliseconds) and comparison. 

We also studied the cost of the second stage. We use 

“PrepQ” to represent the client-side cost of transforming 
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queries, “purity” to represent the rate (final result 

count)/(1st stage result count), and records per query 

(“RPQ”) to represent the average number of records per 

query for the first stage results. The quadratic filtering 

conditions are used in experiments. Table 1 compares the 

average wall-clock time (milliseconds) per query for the 

two stages, the RPQ values for stage 1, and the purity of 

the stage-1 result. The tests are run with the setting of 10K 

queries, 20K records, 30% dimensional query range and 5 

dimensions. Since the 2nd stage is done in memory, its 

cost is much lower than the 1st-stage cost. Overall, the two 

stage processing is much faster than linear scan and 

comparable to the original R*Tree processing. 

 

VI.E. Performance of kNN-R Query Processing 

In this set of experiments, we investigate several aspects 

of kNN query processing. (1) We will study the cost of (k, 

δ)-Range algorithm, which mainly contributes to the 

server-side cost. (2) We will show the overall cost 

distribution over the cloud side and the proxy server. (3) 

We will show the advantages of kNN-R over another 

popular approach: the Casper approach [24] for privacy-

preserving kNN search. (k, δ)-Range AlgorithmsIn this set 

of experiments, we want to understand how the setting of 

the δparameter affects the performance and the result 

precision. Figure 10 shows the effect of δ setting to the (k, 

δ)-range algorithm. Both datasets are twodimensional data. 

As δ becomes larger, both the precision and the number of 

rounds needs to reach the δ condition decreases. Note that 

each round corresponds to one server-side range query. 

The choice of δ represents a trade-off between the 

precision and the performance. 

 

Comparing kNN-R with the Casper Approach.In this set of 

experiments, we compare our approach and the Casper 

approach with a focus on the trade off between the data 

confidentiality and the query result precision (which 

indicates the workload of the in-house proxy). Based on 

the description in the paper [24], we implement the 1NN 

query processing algorithm for the experiment.  

 

VII. CONCLUSION 

We propose the RASP perturbation approach to hosting 

query services in the cloud, which satisfies theCPEL 

criteria: data Confidentiality, query Privacy, Efficient 

query processing, and Low in-house workload. The 

requirement on low in-house workload is a critical feature 

to fully realize the benefits of cloud computing, and 

efficient query processing is a key measure of the quality 

of query services. RASP perturbation is a unique 

composition of OPE, dimensionality expansion, random 

noise injection, and random projection, which provides 

unique security features. It aims to preserve the topology 

of the queried range in the perturbed space, and allows to 

use indices for efficient range query processing.With the 

topology-preserving features, we are able to develop 

efficient range query services to achieve sub lineartime 

complexity of processing queries. We then develop the 

kNN query service based on the range query service. The 

security of both the perturbed data and the protected 

queries is carefully analyzed under a precisely defined 

threat model. We also conduct several sets of experiments 

to show the efficiency of query processing and the low 

cost of in-house  processing. 

 

We will continue our studies on two aspects: (1) further 

improve the performance of query processing for both 

range queries and kNN queries; (2) formally analyze the 

leaked query and access patterns and the possible effect on 

both data and query confidentiality. 

 

REFERENCES 
[1]. [1] R. Agrawal, J. Kiernan, R. Srikant, and Y. Xu, “Order 

preserving encryption for numeric data,” in Proceedings of ACM 

SIGMOD Conference, 2004. 

[2]. M. Armbrust, A. Fox, R. Griffith, A. D. Joseph, R. K. andAndy 
Konwinski, G. Lee, D. Patterson, A. Rabkin, I. Stoica, and M. 

Zaharia, “Above the clouds: A berkeley view of cloud computing,” 

Technical Report, University of Berkerley, 2009. 
[3]. J. Bau and J. C. Mitchell, “Security modeling and analysis,” IEEE 

Security and Privacy, vol. 9, no. 3, pp. 18–25, 2011. 

[4]. S. Boyd and L. Vandenberghe, Convex Optimization. Cambridge 
University Press, 2004. 

[5]. N. Cao, C. Wang, M. Li, K. Ren, and W. Lou, “Privacypreserving 

multi-keyword ranked search over encrypted cloud data,” in 
INFOCOMM, 2011. 

[6]. K. Chen, R. Kavuluru, and S. Guo, “Rasp: Efficient 

multidimensional range query on attack-resilient encrypted 
databases,” in ACM Conference on Data and Application Security 

and Privacy, 2011, pp. 249–260. 

[7]. K. Chen and L. Liu, “Geometric data perturbation for outsourced 
data mining,” Knowledge and Information Systems, 2011. 

[8]. K. Chen, L. Liu, and G. Sun, “Towards attack-resilient geometric 

data perturbation,” in SIAM Data Mining Conference, 2007. 
[9]. B. Chor, E. Kushilevitz, O. Goldreich, and M. Sudan, “Private 

information retrieval,” ACM Computer Survey, vol. 45, no. 6, pp. 

965–981, 1998. 
[10]. R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky,  

 

 


